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In this document, we analyse the potential harms a large-scale deployment of the Luca

system1 might cause to individuals, venues, and communities. The Luca system is a digital

presence tracing system designed to provide health departments with the contact information

necessary to alert individuals who have visited a location at the same time as a SARS-CoV-2-

positive person. Multiple regional health departments in Germany have announced their plans

to deploy the Luca system for the purpose of presence tracing. The system’s developers suggest

its use across various types of venues: from bars and restaurants to public and private events,

such religious or political gatherings, weddings, and birthday parties. Recently, an extension to

include schools and other educational facilities was discussed in public.2

Our analysis of the potential harms of the system is based on the publicly available Luca

Security Concept3 which describes the system’s security architecture and its planned protection

mechanisms. The Security Concept furthermore provides a set of claims about the system’s

security and privacy properties. Besides an analysis of harms, our analysis includes a validation

of these claims.

1See https://www.luca-app.de/system/
2See https://twitter.com/_lucaApp/status/1368544491506896896?s=20
3The analysis is based on the March 10 version of the Security Concepts document (Document revision:

eece55c available at https://github.com/lucaapp/security-concept)
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Summary of Findings

Our analysis of the Luca Security Concept uncovers the following concerns:

Sensitive information leaked to the Luca Backend Server. In its normal mode of oper-

ation, the Luca Backend Server collects and processes a large amount of sensitive information

about venues and individuals. By design, the Luca Backend Server can:

• Learn real-time information about venues, e.g., how many people are at a venue, when they

arrive and when they leave. This information could be repurposed for, amongst others,

commercial reasons or the surveillance of communities tightly linked to these venues, e.g.,

based on their political or religious orientation.

• Learn which venues have been visited by Sars-CoV-2-positive users. This information

could be repurposed to create a risk-based rank of venues. This might result in the social

stigmatisation of venues, as well as their associated communities.

• Learn the pseudonym of users who report a positive diagnosis for Sars-CoV-2, link the

past location visits of these users for the period in which they were thought to be con-

tagious, and learn the pseudonym of users that visited a venue at the same time as a

positive index case. These pseudonyms are unique, persistent identifiers of users and can

potentially be linked to the user’s IP address or phone number, which may lead to the

re-identification of users. This information may be repurposed to take restrictive measures

against individuals, threaten their freedom of movement and association, force users to

change their behaviour, or contribute to users’ social stigmatisation.

• Link visit records of the same (group of) users based on meta-data with high probability.

This information could be repurposed for commercial interests or for the surveillance of

individuals and communities.

These inferences do not require the adversary to actively modify the system’s operational

information flows or circumvent its protection mechanisms. The Luca service operator (or any

entity that compromises, coerces, or subpoenas the Luca Backend Server) can cause any of

these harms without being detected. The risk of these harms may discourage the participation

of users and venues, effectively reducing the effectiveness of the Luca system.

High risk of abuse due to centralisation of trust. The Luca system centralises trust in a

single powerful entity, the party operating the Luca Backend Server. If this central entity acts

maliciously, or is compromised, or coerced, the server could gain full access to any individual

user’s contact data and location history.

The current system does not provide any technical safeguard against arbitrary access to this

information in case of misbehaviour. Its security concept solely relies on procedural controls

and requires full trust in the Luca service operator to follow the protocols faithfully.
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Figure 1: Overview of the Luca system

1 Overview of the Luca System

We give a high-level overview of the Luca system to support the analysis provided in this

document. We only describe system aspects and information flows relevant to the analysis. We

omit cryptographic details where they are not relevant for our analysis.4

We note that Luca’s Security Concept does not explicitly describe the system deployment.

At the time of this analysis, the source code of the Luca system is not openly accessible.

Our description is a best-effort interpretation of the (sometimes implicit) clues provided by

the Luca documentation. We cannot be sure, however, whether the actual implementation

follows these exact interaction patterns. In particular, we do not know whether the actual

implementation includes backend servers not mentioned in the documentation. We note that

any differences between our assumptions about the system deployment described below and the

actual deployment scenario might affect the harm analysis put forward in this document. To

avoid overestimating the harms, our assumptions about implementation take the least harmful

option or explicitly explain the different possible implementation choices.

At the centre of the system is the Luca Backend Server. This server stores a record of every

visit made by a visitor to a Luca-supported venue provides an interface to Health Departments

and venues, and orchestrates the tracing process. The Luca Backend Server also holds a database

of registered venues and a database of users linked to a permanent pseudonymous identifier,

the user id. This pseudonym is linked to the user’s encrypted contact data, and during the

system’s operation, it can be associated with metadata as we detail in our analysis. See also

Figure 1.

Interacting with the system. In our analysis, we assume that Health Departments, venues, and

4The full description of the Luca Security Concept is accessible at https://luca-app.de/securityconcept/

intro/landing.html
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visitors use the following mechanisms to interact with the Luca system:

• Health departments use the Health Department Frontend. This is a web application that

interacts with the Luca Backend Server. Health departments load this web application

(e.g., the corresponding HTML and Javascript files) from the Luca Backend Server.

• Venues Owners use the Venue Owner Frontend to interact with Luca. Again, this is a

web application that interacts with the Luca Backend Server. Venue Owners load this

web application from the Luca Backend Server.

• Venue employees use the Scanner Frontend to register visitors. This frontend is either a

web application (as above) or a smartphone/tablet application.

• Visitors use the Luca App, a mobile application installed on a visitor’s personal device,

to interact with the Luca Backend Server.5

1.1 Joining the system

Users join the system using the Luca App installed on their personal device. The server validates

the user’s phone number and stores an encrypted record of the user’s contact data (name,

address, phone number) at the Luca server. The phone receives an associated user id. The

user’s device holds the secret key that unlocks the encrypted contact record. The phone also

generates a tracing seed that is refreshed daily.

Venues join the system by creating an account at the Luca Backend Server. Each venue

enters their information (name, address, etc.) into the Venue Owner Frontend, and the Luca

Backend Server stores the venue record in a central database. The Venue Owner Frontend

generates a public-private venue keypair. Venues store the private key locally. The public keys

of all venue owners are stored at the Luca Backend Server to facilitate QR code check ins.

Health departments join the system by requesting the Luca Backend Server to create a new

Health Department account. The Luca service operator provisions a certificate and account

credentials for the employees of the Health Department. Employees use their account credentials

and certificates to access the Health Department Frontend. For each newly registered Health

Department, the Health Department Frontend generates a new Health Department key pair.

The private key of each key pair is stored locally at the responsible Health Department.

To facilitate the decryption of contact data in visit records, Health Departments share daily

master keys. Every day, Health Departments use an asynchronous process to generate a new

shared master key. We detail this process in Section 2.3.

1.2 Visiting a venue

For each new check-in, the Luca App derives a new trace id from its tracing seed. The

Luca App also obtains the current day’s public master key from the Luca Backend Server. It

creates an encrypted user reference by encrypting the user’s user id and contact data secret key

5The Luca system provides the option to record location visits using a static Badge that is scanned by the
Venue or a web application. For simplicity, we only describe the flows using the Luca app, as we expect that the
are more likely to be used.
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against this master public key. The Luca App displays both the trace id and the encrypted

user reference in a QR code. This code is scanned by the venue’s Scanner Frontend. The

Scanner Frontend adds a second layer of encryption to the user reference using the venue’s

public key. It uploads a check-in record that contains a unique identifier for the scanner, the

user’s current trace id, the double-encrypted user reference, and the check-in time to the Luca

Backend Server. The Luca App polls the server with the current trace id to confirm that the

check-in was successfully recorded. Once the user leaves the venue and triggers check-out, the

phone sends the trace id of the current check-in together with the departure time to the Luca

Backend Server.

The Luca proposal also foresees two other check-in modes: self check-in, where visitors use

their app to scan a QR code provided by the venue, and badge check-in, where venues scan a

static QR code held by the visitor. These flows’ privacy properties are the same or worse than

those of the flow sketched above. Hence, they can only worsen the resulting harms. We will

note the differences where relevant.

1.3 Tracing and notification

Tracing proceeds in two phases. An infected user can initiate tracing by encrypting its user id

and the tracing seeds for the relevant time period to the current daily master key and uploading

them to the Luca Backend Server. The responsible Health Department logs into the Health

Department Frontend and retrieves from the Luca Backend Server the encrypted user id and

seeds as well as the daily private master key encrypted to their specific Health Department key.

The Health Department Frontend unlocks the daily master key and uses it to decrypt the user’s

identifier user id and tracing seeds. It sends the decrypted identifier and tracing seeds back to

the Luca Backend Server. The server uses these seeds to find all check-in records associated with

the positive index case via their trace ids. This allows the Luca Backend Server to identify

which venues the positive index case visited, when, and for how long.

To provide the contact data of users that visited a venue at the same time as the index case,

the Luca server proceeds as follows. It contacts the venue owner to request their assistance. The

venue owner logs in to the Venue Owner Frontend and provides their private key. The Venue

Owner Frontend requests the doubly encrypted records of the Luca Backend Server’s relevant

times, decrypts them locally, and sends the singly encrypted records back to the server.

The Health Department Frontend retrieves the singly encrypted records from the Luca

Backend Server and decrypts them with the corresponding daily master key to obtain the

user id of all relevant users. Finally, the Health Department Frontend requests the encrypted

contact records corresponding to the identified user ids and decrypts them.

2 Analysis of Potential Harms

We analyse the system with respect to the potential harms its deployment might cause to indi-

viduals, venues, and communities. We evaluate whether the system defends against each of these

harms and, where applicable, discuss whether it mitigates these harms through architectural

design decisions, through technological safeguards, or through procedural controls.
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2.1 Potential Harms

We have identified the following harms as the most concerning and relevant for our analysis:

Targeted surveillance of individuals

An adversary might re-purpose the system to extract information about individual users, such as

personal contact data, present and past location visits, or social relationships. If the system’s

deployment leaks this information, it might lead to the surveillance of individuals and the

associated restrictions of individuals’ freedoms.

Targeted surveillance of venues and associated communities

An adversary might re-purpose the system to extract information about venues and their activ-

ities. This includes, for instance, the location of a registered venue itself, information about the

number of people assembling at a specific location and time, or any metadata associated with a

venue, such as the name and contact data of the responsible venue owner (or event organizer).

Registered venues might include public and private events, such as religious gatherings, political

events, or family celebrations which renders this information highly sensitive. If the system’s

deployment leaks this information, it might lead to the surveillance of target groups based on

venues these groups are likely to visit.

Social stigmatisation of individuals

An adversary could use the system to learn which individuals have reported a positive test

for Sars-CoV-2 and which individuals the responsible Health Department might notify about a

potential infection. Leakage of this information to any entity other than the responsible Health

Department is a clear violation of user privacy, and can have further consequences. If this

information were to be made public, it could lead to the social stigmatisation of individuals.

More worryingly, it could lead to the coercion of individuals. Adversaries could threaten to

publish compromising information about individuals to exert pressure. This is particularly

problematic for public persons whose reputation might be harmed by revelations about their

health status or their presence at particular events. Target individuals could be forced into

changing their public behaviour which can have negative effects for society at large.

Social stigmatisation of venues and their associated communities

An adversary could use the system to learn which venues have been visited by a positive index

case. If this information were to be made public, it might lead to the social stigmatisation

of venues visited by a high number of positive index cases. This could further cause harm to

the communities tightly linked to these venues based on, for example, their political, sexual, or

religious orientation.

2.2 Analysis of Potential Harms in the Luca System

A deployment of the Luca system might cause the following harms to individuals, venues, and

communities.
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2.2.1 Targeted surveillance of individuals through the Luca Backend Server

User location profiles. Whenever a user checks in to a venue or departs from a venue, their

personal device makes a direct connection to the Luca Backend Server and provides the user’s

current trace id (see Section 1.2). For each connection, the Luca server observes the user’s IP

address and other information such as the user’s device type and possibly the Luca App version.

The Luca Backend Server can use this metadata to probabilistically link check-in records that

likely belong to the same user and learn this user’s (partial) location history.

For users with a unique IP addresses – e.g., every time mobile phones are assigned an IPv6

address, and exceptionally when the gateway does not use an IPv4 NAT – the Luca Backend

Server can link check-in records to the same user for as long as the user’s IP address does not

change. The server first observes a visit record from the venue associated to a trace id, and

then a poll request associating an IP to this trace id. Thus, the server can associate IPs to

visit records; and can link records over time via this IP.

In most cases, mobile providers deploy a carrier-grade NAT to share IPv4 addresses among

users.6 As a result, the Luca Backend Server observes the same IPv4 address for several devices.

Even in this scenario, however, the Luca Backend Server is likely to be able to link a user’s

check-ins across locations and corresponding trace ids. To do so, an adversary with access to

the Luca Backend Server can leverage the following observations to reduce the anonymity set

of users behind the same public IPv4 address:

• Devices with different mobile phone carriers will always be distinguishable based on their

IP address, as it refers to an operator’s gateway.

• Even when using carrier-grade NAT, mobile devices likely maintain the same IPv4 address

over a prolonged time period. For technical reasons, the number of devices sharing the

same external IPv4 address is limited.

• Of the devices sharing the same IPv4 address, a significant fraction might not be using

the Luca App.

• The remaining devices sharing an IPv4 address are likely not all in close physical proximity.

• The check-in events recorded by venues contain additional metadata such as the user’s

device type7 which further reduces the likelihood that two devices of the same type share

an IP address.

As a result, the user anonymity set is likely to not be large enough to ensure privacy.

To validate our claims, we run a preliminary analysis in which we use a phone to make

requests to our own HTTP server. We use the server’s access log to analyze the visiting IPv4

and IPv6 addresses and the ports used in the case of IPv4. At the same time, we record the

phone’s traffic to compare the internal and external public addresses.

This small experiment shows that as long as the user does not disconnect from the network

(e.g., restarting the phone, changing the SIM card, or switching on airplane mode), the IP

address is stable. Furthermore, we see that each new IPv4 request at an HTTP server uses

an individual port and that these ports are incremented over time. When visiting multiple

6This NAT-based sharing is mentioned as mitigation against linkability risks in the Luca Security Concept:
https://luca-app.de/securityconcept/processes/guest_app_checkin.html

7See Luca Security Concept: https://luca-app.de/securityconcept/processes/guest_app_checkin.html
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locations, users might be tracked through these port numbers even though their external IP

address is behind a NAT. Moreover, we see that carrier-grade NAT is only used for IPv4

addresses. If carriers assign IPv6 addresses to devices (e.g., in T-Mobile and Vodafone) and

the Luca server is reachable via IPv6, the server can directly observe the client’s unique IPv6

address.

In a second experiment, we analyze the geographical distribution of gateways within Ger-

many. This provides us with information about the gateways users share and the anonymity

sets that the public IPv4 addresses of these gateways represent. We observe that the gateway

that users are assigned to does not depend on their geographical location.

While our experiments are limited in scale and require validation at a larger scale, our

results demonstrate that an in-depth study of mobile and WiFi network behaviour is needed

to substantiate the claim that linkability is not possible. We also note that increasing the level

of unlinkability may not depend on the service provider (in this case, the Luca server) but on

the carrier. In fact, it may be that the only way to guaranteeing unlinkability is to rely on

anonymous communications systems.

We conclude that the network-level meta-data already enables the Luca server to drastically

reduce the anonymity set of check-in records, eventually enabling probabilistic linking of differ-

ent checks. To increase the strength of this inference, the Luca Backend Server can combine

this network-level data with the location of venues and check-in and check-out times, which

it can also observe. Combining the IP-based analysis with a spatiotemporal analysis based on

check-in and check-out times and the location of venues enables the Luca Backend Server to

construct (partial) location profiles linked to a pseudonymous user identifier.

Social relationships. In addition, the Luca server can probabilistically link records that belong

to groups of users. Users in a group that arrive at a venue together are bound to check-in within

a short time window using the same scanner. For each check-in, the Luca server sees precise

check-in times and the scanner id for each record. Moreover, a group of users likely departs at

the same time which again results in a set of check-out events within a short time window. The

Luca Backend Server can combine these data to probabilistically group records by user groups.

This enables the Luca Backend Server to reconstruct relationships between records of differ-

ent users. And as we explained above, records of individual users can be grouped by temporary

pseudonyms, thus enabling the Luca Backend Server to recover pseudonymous relationships.

However, should these pseudonyms become linked to an identifier (e.g., through their IPs or

other meta-data; or as a result of tracing) then the server can reconstruct meetings between

individuals and their duration. This surveillance harms users and communities.

Active surveillance. The probabilistic linkage attacks described above assume that the Luca

Backend Server does not actively try to circumvent the confidentiality provided by the double

encryption of check-in records. As we detail in Section 2.3, however, several methods enable an

active adversary with control over the Luca Backend Server to do so. Using these methods, the

adversary can reveal the user id that belongs to any check-in record of its choice. This enables

the adversary to create location traces linked to a permanent pseudo-identifier.
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User re-identification. A malicious backend server can leverage other information about users,

such as a user’s phone number used during registration or their IP address, to attempt to re-

identify individuals. If the Luca Backend Server successfully matches a user’s pseudo-identifier

to an identity, any information the server holds about this pseudo-identifier, such as (partial)

location traces or a user’s health status, becomes directly linked to the re-identified individual.

Surveillance of individuals. All of the inferences described above violate users’ location privacy

and lead to the surveillance of individuals. The powers of the central server could easily be

abused to observe the whereabouts of target individuals or to reconstruct social relationships

between individuals.

The current system design does not include any technical safeguards against many of these

adversarial inferences. For instance, an adversary can conduct probabilistic linkage attacks

based on user IP addresses without any changes to the system’s normal operations. Confiden-

tiality of user’s location traces relies solely on the trustworthiness of the Luca Backend Server.

If the Luca Backend Server acts maliciously, is compromised, or coerced to provide access, it

can cause harm without being detected.

2.2.2 Surveillance of venues and their associated communities through the Luca

Backend Server

Electronic registry of events. The system design requires venues to register at the Luca Backend

Server. The server stores the provided venue information in a central database, including the

owner’s or organizer’s contact information and the exact geo-coordinates of the venue. Such a

database allows any entity with access to the Luca Backend Server to learn about the existence

of these venues.

For some types of venues, such as political or religious gatherings, creating such records

may in itself pose a threat. While many venues, such as bars or restaurants, are already part

of publicly available registries, e.g., for licensing or mapping purposes, for other types of social

gatherings relevant in the context of contact tracing, no electronic records exist. Creating a

digital record of these events, stored in a central database, might cause harm to communities

and restrict their fundamental rights to freedom of association.

Real-time profiling of venues. During normal operation, the server collects a record of every

check-in event reported by venues together with a unique identifier for the scanner that recorded

the check-in. The scanner id enables the server to link a check-in back to a specific venue.

Check-ins are sent to the Luca Backend Server in real-time to allow users’ devices to confirm

with the server that a scan was successful. Later, users directly communicate their check-out

times to the central server. The Luca Backend Server hence observes, in real-time, how many

people are gathered at a venue and when they arrive and leave. This information could be easily

repurposed for the (real-time) surveillance of venues and their associated communities.

The system does not include any mitigations against this harm. The Luca Backend Server,

by design, acts as a central entity that collects and links information about venues and their

9



activities. The system does not aim to prevent the Luca Backend Server from accessing this

information. While the current system documentation does not mention any secondary use of

the data collected at the Luca Backend Server, the Luca service operator could at any time decide

to repurpose the data for commercial purposes, could be coerced to share this information, or

compromised by unknown actors.

2.2.3 Social stigmatisation of individuals

Positive users. To initiate the tracing process and share the relevant contact data with the

responsible Health Department, individuals use the Luca App to upload an encrypted user ref-

erence, including their user id and tracing seeds, to the Luca Backend Server. The server issues

a verification code that the user’s app displays. The upload process allows the Luca Backend

Server to link the verification code is issued to a user’s IP address.8

The Health Department uses the user-specific verification code to retrieve the encrypted

user reference of the positive index case from the Luca Backend Server. It decrypts the user

reference to obtain the user’s user id and requests from the Luca Backend Server the encrypted

contact data stored for this user id. The Luca Backend Server hence observes, within a short

time frame, two requests from the Health Department: first, a request for the user reference

linked to a verification code, and second, a request for the contact data linked to a user id.

The server can correlate these requests to link user pseudonyms to verification codes and their

corresponding IP addresses.9

To identify the venues visited by a positive index case, the Health Department forwards the

user id and the corresponding tracing seeds to the Luca Backend Server who identifies all past

location visits recorded for this user. Through the tracing process, the Luca Backend Server

learns which trace ids can be linked to the same user id. This reveals the past location visits

of the positive index case to the Luca Backend Server.

In summary, the Luca Backend Server can observe the IP address of users who report a

positive diagnosis and correlate this IP address to a permanent pseudo-identifier, the user id.

Subsequently, the server learns the full location history linked to the pseudonymous user, in-

cluding the geo-coordinates of all venues visited and exact arrival and departure times.

Trace contacts. To obtain the contact data of traced individuals who need to be notified, the

Health Department Frontend obtains a list of their user ids and shares them with the Luca

Backend Server. This allows the Luca Backend Server to infer which (pseudonymous) users

have been in contact with a positive index case.

Breach of user confidentiality. The inferences described above clearly breach the confidentiality

of user’s sensitive health and location information. If made public, the learned information could

8Users are likely to initiate the tracing process while quarantining at home so that an upload can be linked
to a user’s home IP address.

9This risk is explicitly acknowledged in the Luca Security Concept: https://luca-app.de/securityconcept/
processes/tracing_access_to_history.html
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lead to the stigmatisation of users who have either tested positive for Sars-CoV-2 or visited a

venue at the same time as a positive index case. This risk could discourage users from reporting

a positive test result or from participating in the system altogether. Even more worryingly,

adversaries could use the information to exert pressure on individuals by threatening to publish

compromising information.

The system does not provide technical safeguards to prevent these harms. While it ensures

that the Luca Backend Server does not hold any cleartext records of user’s personal data, i.e.,

it only identifies users via a pseudonymous identifier. The system still allows the central server

to link sensitive data, such as multiple check-ins and encrypted user reference uploads, to these

pseudo-identifiers. The more data the server is able to link to the same user profile, the more

likely it becomes that the user might be identifiable based on the associated metadata (see 2.2.1,

Re-identification).

2.2.4 Social stigmatisation of venues and their associated communities

Health departments rely on the Luca Backend Server to identify which venues a positive index

case has visited in the past. During the tracing process, the Health Department Frontend sends

the tracing seeds of users who reported a positive test for Sars-CoV-2 to the Luca Backend

Server. The server searches the database of check-in events for trace ids that belong to a

tracing seed marked as positive. For this purpose, the server must identify which venues should

be contacted and the relevant tracing times.

The Luca Backend Server not only learns which venues have been visited by a Sars-CoV-

2-positive user, but also how many people were present at the same time as the positive index

case, and when the incident occurred. This information could be used to rank venues based

on their positive case number and result in social stigmatisation of venues and their associated

communities. Social groups affiliated with specific venue types, such as religious or political

gatherings, might suffer negative consequences from being perceived as “dangerous” or “negli-

gent”. The potential harms of being publicly marked as a high-risk location could discourage

venues’ participation in the tracing process.

The system does not include any mitigation against this harm. Due to its central role in the

tracing process, the Luca Backend Server gains a detailed overview of epidemiologically relevant

information that can be repurposed. To avoid this leakage, the system design should ensure

that only responsible Health Departments learn which venues have been visited by a positive

index case, and for which time frames contact data needs to be requested. Given the current

architecture, eliminating this information would entail a substantial redesign of the protocols

and information flows.

2.3 Active attacks

The confidentiality of records stored at the Luca server rests on the double encryption provided

by venues and Health Departments. An adversary who actively circumvents these protection

mechanisms can learn the exact check-in history of users and their identities (e.g., who was

where, when).
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We now detail several methods which an adversary with control over the Luca Backend

Server can use to defeat the system’s confidentiality protections. The methods described below

all imply that the Luca Backend Server deviates from its normal execution path and does not

follow the policies laid out in the Luca Security Concept. This might be the case if the Luca

service operator has a high incentive to act against these policies, or is coerced, subpoenaed, or

compromised by outside actors. The analysis demonstrates that the Luca Backend Server is a

fragile single-point-of-failure for the confidentiality of the Luca system.

2.3.1 Circumventing the protection provided by venue encryption

The Luca Backend Server has the following means to circumvent the protection offered by

encrypting records against the venue’s public key.

1. Directly request decryption from venues. In the current design, Venue Owners cannot

authenticate the origin of decryption requests as all requests are channeled via the Luca

Backend Server. The Venue Owner merely acts as a decryption oracle, i.e., it cannot know

whether the decryption of records is requested based on a legitimate tracing query from a

Health Department or whether this is a malicious request from the Luca Backend Server.

2. Expand legitimate decryption requests. The Luca Backend Server is responsible for for-

warding and mediating legitimate decryption requests by the Health Department Fron-

tend. The Luca Backend Server is expected only to request the decryption of records

that fall within a time slot relevant for contact tracing. However, the Luca server can

arbitrarily expand the requested time intervals, adding as many other records as it wants

to this decryption request. The Venue Owner currently has no means to detect that these

extra records are outside of the range authorized by the Health Department.

3. Substitute a venue’s public key. Users have the option to check-in by scanning a printed

QR code provided by the venue. This QR code currently does not include the venue’s

public key. Instead, the app retrieves the venue’s public key from the Luca Backend

Server. The server can, therefore, trivially replace the correct key with an encryption key

of its own. It can then trivially remove one layer of encryption.10

4. Silent modification of the Venue Owner Frontend code. The Luca Backend Server provides

the code that runs at the Venue Owner Frontend. As such, the server could modify the

code directly or do so indirectly via one of the included JavaScript libraries. The Venue

Owner Frontend could be modified to (a) generate backdoored venue keys; (b) to exfiltrate

a copy of the private key once it is generated; (c) to exfiltrate a copy of the private key any

time it is used; or (d) to circumvent any of the other checks around accepting decryption

requests.

This attack can be targeted. For example, the server can send modified code only to a

venue for which it wants to obtain the decryption key. Such targeted attacks are thus

extremely difficult to detect.

10Incorporating a venue’s public key into the printed QR code is left as a future improvement to the system
implementation: https://luca-app.de/securityconcept/processes/guest_self_checkin.html.
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2.3.2 Circumventing the protection provided by Health Department encryption

The Luca App uses a daily master public key, distributed via the Luca Backend Server, to

encrypt the user’s contact data before exposing it via a QR code to the Scanner Frontend. The

system’s confidentiality relies on the fact that only Health Departments can access the daily

master private key to remove this inner layer of record encryption. Every Health Department

can access this daily master private key. We demonstrate why this shared secret is a major

weakness of the Luca design.

Daily master key rotation. We first detail the process used to generate and rotate the daily

master key pair. Every Health Department holds an encryption and a signing key pair. The

Luca Security Concept does not specify how these keys are stored. We assume that all private

keys are stored locally at the Health Department and entered into the Health Department

Frontend when needed.

If a new daily master key pair must be generated, the first Health Department that logs in

to the Health Department Frontend proceeds as follows:

1. Compute a new daily master key pair

2. Sign the new master public key (using its Health Department’s private signing key) and

upload both the new public key and the signature to the Luca Backend Server.

3. Retrieve the public encryption keys of all the other health authorities from the Luca

Backend Server. Encrypt the master private key for each of the other Health Departments.

Upload these ciphertexts to the Luca Backend Server.

Whenever a Health Department needs a daily master private key, they request the encrypted

master private key from the Luca Backend Server and decrypt it using their private decryption

key.

In the current version of Luca, the public keys of Health Departments do not come with a

certificate. We therefore analyze the system under the assumption that no key certification is

in place. Adding certificates adds some protection to the system but does not protect against

all attacks (see Section 2.3.3).

Circumventing Health Department encryption. The Luca Backend Server has the following

means to circumvent the protection offered by encrypting records against the daily master key.

1. Substitute the daily master public key. The Luca App and the Scanner Frontend retrieve

the daily master public key from the Luca Backend Server. For purposes of authentication

and integrity, this key is signed by a Health Department’s public key. The Luca server

also provides the signature and the corresponding public key to verify the signature. As

long as there are no certificates in place to bind the signing key to a legitimate Health

Department, the Luca Backend Server can substitute this daily master public key with a

key of its choosing and create its own signature. Currently, this key substitution cannot

be detected. After replacing the daily master key, the Luca Backend Server can decrypt

any records encrypted under this key. This is particularly problematic as the daily master

public key is also used to protect the confidentiality of users who report a positive diagnosis

for Sars-CoV-2 (see Section 2.2.3).
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2. Impersonate a Health Department. The Luca Backend Server can impersonate a Health

Department to learn the daily master private key. To do so, in step (3) of the daily

master key generation protocol, it adds its own public key to the list of public keys of

Health Departments. An honest Health Department cannot distinguish the Luca key from

legitimate Health Department’s keys. Therefore, it will encrypt the new daily private key

against the public key of the Luca server and return it to the Luca Backend Server. The

Luca server can then decrypt it to obtain the daily private key. We note that in the the

current implementation, the Luca Backend Server has the power to enroll any party as a

Health Department. Proper use of certificates would prevent this attack.

3. Using the Health Department Frontend as a decryption oracle. A malicious Luca Server

can use the Health Department Frontend as a decryption oracle to obtain the user id of

(partially decrypted) check-in records.

During the tracing process, the Luca Backend Server reconstructs the visit history of

positive users and identifies which check-in records need to be decrypted to obtain the

contacts of users who should be notified. It sends the relevant records to the venues who

remove the records’ outer layer of encryption. The server forwards the partially decrypted

records to the Health Department Frontend who removes the last layer of encryption and

sends the resulting user ids back to the Luca server. The Health Department Frontend

currently has no way to validate the authenticity of the decryption requests. A malicious

Luca server can request the Health Department Frontend to decrypt any record of its

choice.

This attack on the system’s confidentiality may be detected. If the responsible Health

Department calls all users included in the list of records forwarded by the Luca Backend

Server, the Health Department might learn that some of the notified users have not visited

any relevant venue.11

4. Silent modification of the Scanner Frontend code. In one of the possible deployment modes,

venues use a Scanner Frontend in the form of a web application. In this case, as above,

the Luca server can modify the JavaScript code and subtly replace the daily master key

with one of its own or circumvent certificate checks.

Such an attack, especially when targeting only a few venues, is likely to go undetected.

5. Silent modification of the Health Department Frontend code. The Luca Backend Server

provides the code that runs at the Health Department Frontend. As such, the Luca server

could modify the code directly or do so indirectly via one of the included JavaScript

libraries. As a result, the Luca server can modify the Health Department Frontend code

to (a) generate backdoored Health Department encryption keys; (b) to exfiltrate a copy

of the private encryption key once they are generated; (c) to exfiltrate a copy of either

private key any time they are used used; or (d) to subtly circumvent certificate checks.

Each of these modifications results in the Luca server learning all daily private keys.

11To avoid being caught, a malicious Luca Backend Server could decide not to return the contact data of
records outside the tracing window. For instance, the implementation of the Health Department Frontend might
silently drop such invalid records, or show a cryptic error message.
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This attack can be targeted and therefore executed stealthily. Modifying the code for

one single Health Department for one single session or page-load is sufficient to obtain

the Health Department’s private decryption key. And thereby all past and future daily

master private keys.

In addition, there is a risk that any of the Health Department’s private keys might be leaked.

The large number of private keys issued12 to access the shared master key considerably increases

the risk that one of these keys might be leaked or stolen. Access to a Health Department private

key would allow the Luca Backend Server to access all past and future daily master keys.

2.3.3 Protections against active attacks

The attacks explained above demonstrate that the confidentiality of check-in records hinges on

a small number of entities’ trustworthiness. In particular, a maliciously acting Luca Backend

Server can quickly compromise the entire system’s security and confidentiality. Some of these

weaknesses, however, can be addressed. We classify the above attacks into three categories:

Attacks mitigated by certificate extensions. Some attacks can be mitigated using well-known

security mechanisms. As the Luca Security Concept mentions, embedding the venue’s public

key directly into the printed QR code prevents substitution attacks. Extending the design with

a trusted Public Key Infrastructure (PKI) would limit the remaining impersonation and key

substitution attacks. The use of a PKI, however, requires careful implementation and only

partially addresses the design’s trust issues: The entity chosen as certificate authority must

be a third party that has to be trusted not to collude with the Luca Backend Server, not to

enroll any entity in the system that is not a Health Department, or to impersonate a Health

Department itself. The certificate authority also must ensure that the Luca Backend Server

cannot create its own valid certificates.

Attacks mitigated by cryptographic extensions. These are decryption oracle attacks where the

Luca server asks Venue Owners or Health Departments to decrypt records outside the relevant

tracing windows. Such attacks could potentially be mitigated by cryptographic extensions

of the current design. These changes, however, might, in and of themselves, open up new

attack vectors.13 Therefore, implementing additional cryptographic techniques has to be done

carefully and should involve domain experts, and external and public reviews of system design

and implementation.

Attacks inherent to the design. Attacks that leverage the fact that all Health Departments share

a master decryption key or that trusted code is provided by untrusted platforms are largely

inherent to Luca’s design choices. Luca must likely be completely redesigned to avoid storing

security-critical private keys at every Health Department. Moreover, in the current design,

the code for Health Departments and venues is provided by a party that, according to Luca’s

security concept, is not trusted to keep users’ data confidential. The risk of misbehaviour is

amplified because it is possible to modify code in subtle ways such that malicious modifications

12There are more than 400 Health Departments in Germany.
13As an example of how additional design complexity can lead to an increase in risk, consider the daily key

rotation of the shared master key. While the daily key rotation might reduce the impact of the leakage of a single
daily master private key, the process to generate a new master key pair actually opens up new ways to obtain
access to the master private key.
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are hard, if not practically impossible, to detect. Finally, we note that such misbehaviour

cannot be prevented by opening the source code, as this code could easily be modified under

deployment requiring intensive oversight to be detected.

3 Conclusions

In this document, we have provided a preliminary analysis of the potential harms that might

result from the reuse or abuse of the information collected and made accessible by the Luca

system.

Main findings. Our analysis demonstrates the following main concerns:

• Through their interactions with the system, users and venues generate a large amount

of sensitive information that, by design, is made accessible to the Luca service operator.

If the Luca service operator acts maliciously, either spontaneously or under coercion,

or is compromised, it can obtain further sensitive information about users. This might

eventually allow the Luca service operator to track individual users across venues and

reveal social relationships between users.

• The richness of the information accessible by the Luca Backend Server results in a wide

range of potential harms the system could inflict on users, communities, and venues.

In our analysis, we provide multiple examples of potential function creep - motivated

by the high value the data generated by the Luca system might have for many entities.

Amongst others, commercial actors could benefit from (real-time) information about venue

occupancy and their past incidence numbers; law enforcement agencies could benefit from

(real-time) information about the whereabouts of users to enforce safety policies or to

conduct surveillance of target individuals and communities.

• The Luca system relies on a complex, centralised architecture in which the Luca Backend

Server orchestrates and intermediates relationships between users, Health Departments,

and Venue Owners. In the current design, the Luca Backend Server is the sole authority

in the system that grants access to critical system functionalities and assigns roles to

different entities. It can therefore not only observe all interactions, but also decide who

has access to decryption keys, and who can request the decryption of records from different

entities. Furthermore, the Luca service operator might change code and procedures at will

without such changes being detected. This allows the Luca service operator to abuse and

repurpose the data in the system without users, or even auditors, having the possibility

to know that abuse is happening.

Luca’s security objectives. The Luca Security Concept lists specific security objects.14 We

argue below that these objectives are either achieved only under the assumption that the Luca

Backend Server is trusted, or not met at all. We note that in our analysis we have identified

many harms that are not covered by these security objectives.

14See https://luca-app.de/securityconcept/properties/objectives.html

16

https://luca-app.de/securityconcept/properties/objectives.html


• O1 “An Uninfected Guest’s Contact Data is known only to their Guest App”:

A maliciously acting Luca server has several ways to decrypt the user references associated

with check-ins (Sect. 2.3.1 and 2.3.2), and therefore to gain access to users’ contact data.

This objective is therefore only achieved if the Luca Backend Server can be fully trusted

and is neither compromised nor coerced to subvert the protections in place.

• O2 “An Uninfected Guest’s Check-Ins cannot be associated to the Guest”:

Check-ins that belong to the same user are (partially) linkable (see Sect. 2.2.1). This

increases the risk that the corresponding Guests might be re-identified. Throughout our

analysis, we show that the connections the Luca App uses to verify check-ins and perform

check-outs can be linked to their IP address under normal operation and, if the server

actively circumvents protection mechanisms, even to the user’s user id (Sect. 2.2.1 and

2.2.3).

• O3: “An Uninfected or Traced Guest’s Check-Ins cannot be associated to each other”:

As explained in the analysis, the Luca Backend Server has many means at its disposal

to link check-in records, regardless of a Guests’s status, often based solvely on data it

observes during normal operation (see Sect. 2.2.1). Moreover, through the normal tracing

process, the Luca server obtains the user ids of all Traced Guests. Depending on the

system’s implementation and the number of traced contacts, this might enable the server

to link check-ins by the same Traced Guest. As for O2, the objective is only achieved if

the Luca Backend Server can be trusted.

• O4 “An Infected Guest’s Check-In History is disclosed to the Health Department only after

their consent”:

In our analysis, we have established that the Luca server can link check-ins to users (see

O2) and link check-ins of the same user (see O3). Thus, the Luca server has the inference

power to reveal any users’ check-in history and share it with any entity, including the

responsible Health Department, at any point in time. Thus, this objective holds only if

the Luca server is trusted.

• O5 “The Health Department learns only the relevant part of the Infected Guest’s Check-In

History”:

A dishonest Luca Backend Server might attempt to reconstruct a user’s check-in history

at any point in time (see Sect. 2.2.1 and O4). As for O4, the objective is thus achieved

only if the Luca server is trusted.

• O6 “Traced Guest’s Contact Data is disclosed to the Health Department only after Venue

Owners’ consent”:

A malicious or coerced Luca server has several ways to circumvent the protection provided

by the venue owner encryption (Sect. 2.3.1. Therefore, the validity of this claim solely

depends solely on the honesty of the Luca server.

Final remarks. In conclusion, our analysis demonstrates how the deployment of digital pres-

ence tracing systems with centralised system architectures might dramatically increase the po-
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tential harms for individuals and communities. The centralised system design furthermore

introduces new harms for venues with respect to their paper-based predecessors: venues need

to be centrally registered and can be profiled in real time.

Our analysis raises the question whether the collection of detailed user information when

implemented as a digital system can still be justified through its potential benefits. The trade-

offs between the risks and benefits of sensitive data collection clearly shift when moving from

a pure pen-and-paper-based system to a digital infrastructure that collects large amounts of

sensitive information about users and venues in a central location. Paper-based systems make

it difficult for adversaries to exploit the collected information at a large scale, and do not

imply any significant risks for venues. The introduction of digital, centralised, data-intensive

solutions, however, considerably increase the potential harms of fine-grained data collection.

The proportionality of data collection with respect to digital presence tracing solutions hence

needs to be re-assessed. Furthermore, decentralized alternatives exist that can achieve similar,

if not the same, functional goals but avoid large-scale data collection and minimise the risk for

abuse. To make an informed decision about the deployment of digital presence tracing systems,

these factors need to be taken into account.
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